# Identification of molecular mechanisms of stress-resistance in turkeys to improve meat quality

Gale Strasburg, Ph.D.

Department of Food Science and Human Nutrition Michigan State University

USDA-CREES: 2005-01326





#### Pale, Soft, Exudative (PSE) Meat

- A meat quality defect, originally observed in pork
- PSE meat characteristics:

Abnormally light color

Flaccid texture

Poor water holding capacity



- Higher frequency in growth-selected animals
- Higher frequency in summer season

# Hypothetical Mechanism for the Development of PSE Turkey Meat

Birds encounter heat stress



Black box

Elevated muscle [Ca<sup>2+</sup>]<sub>res</sub>

Muscle hypermetabolism & accelerated glycogenolysis

**Development of PSE turkey meat** 

# Calcium Regulation in Avian Skeletal Muscle



### Factors affecting Ca<sup>2+</sup> regulation

- Primary structure of RYR changed by point mutation or alternative splicing
- Presence of RYR channel activator: halothane, caffeine, thyroid hormone
- RYR and SERCA expression regulated by the thyroid hormone status

### Thyroid Hormone Regulation

| Normal          | Increased basal metabolic rate, O <sub>2</sub> consumption and heat production |  |  |  |
|-----------------|--------------------------------------------------------------------------------|--|--|--|
| Hypothyroidism  | Sensitive to cold                                                              |  |  |  |
| Hyperthyroidism | Sensitive to heat                                                              |  |  |  |

Thyroid hormone levels could influence Ca<sup>2+</sup> homeostasis in muscle by:

- affecting RYR and SERCA activity
- affecting RYR and SERCA expression

### **Objectives**

- Investigate thyroid hormone levels influenced by heat stress and the influence of thyroid state on expression and functional properties of RYR
- Investigate alternatively spliced αRYR transcript variants through heat stress treatment
- Evaluate post-heat-stressed turkey meat quality

#### Turkey resources:

RBC2 (genetic unimproved, random bred line) Commercial (growth-selected line)

### Experimental Design

Turkeys: RBC2 line- M & F

Commercial line- M & F

Heat stress condition: 12 hours of 95°F, 12 hours of 80°F

Heat stress treatments:

| Group        | Control | 1D | 3D | 5D  | Rest                     |
|--------------|---------|----|----|-----|--------------------------|
| Duration (h) | 0       | 24 | 72 | 120 | 168 stressed<br>168 rest |

#### Sample collections:

blood (thyroid hormone-T3 & T4)

breast muscle (RNA, RYR purification)

breast muscle (pH<sub>15 min</sub>, color-L\*, drip loss, cook loss, marinade uptake)

## Thyroid hormone and meat quality in response to heat stress

• Thyroid hormone response in heat-stressed birds: commercial birds fluctuated.

RBC2 birds were stable until stressed for 5D;

• Meat quality in heat-stressed birds: most noticeable in cook loss & marinade uptake





# Thyroid hormone and meat quality in response to heat stress

• Variations of cook loss and marinade uptake followed closely to the variations of T<sub>3</sub> in birds of both lines

#### **Commercial line**





# Thyroid hormone and meat quality in response to heat stress

• Variations of cook loss and marinade uptake followed closely to the variations of T<sub>3</sub> in birds of both lines



#### **Conclusions**

- Growth selection did not have a negative impact on meat quality, but meat quality from commercial birds was less consistent when birds were heatstressed
- Birds with stable thyroid hormone response to heat are likely to produce consistent fresh turkey meat and further processed turkey products.

**Questions** 

